

GPS III radiation force modeling

F. Dilssner, T. Springer, E. Schönemann, W. Enderle

28/06/2022

ESA UNCLASSIFIED - For ESA Official Use Only

Background

- No pre-launch engineering information from manufacturer available to build solar/thermal force models needed for GPS Block III spacecraft precise orbit determination (POD)
 Need to determine Block III radiative force model from flight data
- Technique/parametrization similar to JPL's GSPM approach (Bar-Sever and Kuang, 2004)
 - Dynamical long (9-day) arc fitting to precise orbit data
 - Radiation force represented as a truncated Fourier expansion about Earth-Satellite-Sun angle
 - Iterative adjustment of Fourier coefficients together with orbit state, Y-bias and along-track CPR parameters
 - Combination on normal equation level to form robust set of satellite-/satellite-group-specific force models
- Advantageous in several aspects over physics-based models such as "box-wing"
 - Reflects actual in-orbit properties
 - Does not require spacecraft surface dimensions or any optical/thermal properties
 - Straightforward to implement into existing POD software

💳 🔜 📲 🚍 💳 📥 📲 🔚 📰 🔜 📲 🔚 📰 🐜 🚳 🛌 📲 🛨 🔤 📾 🍁 🖬 🔸 🔸

Sensitivity to solar radiation pressure (SRP)

- Dimensions of Block III SVs substantially different to previous Block II
 - 2161 kg on-orbit mass, about 500 to 1200 kg heavier than predecessors
 - SV body much more cuboid, X face almost twice as large as Z face
- Estimate effect the varying cross section of SV body has on SRP
 - Difference maximum minus minimum radiated area divided by mass
 - Sensitivity factor among GPS satellite family is highest for Block III, indicates strong need for a-priori background model

GNSS SV	x-panel [m ²]	z-panel [m ²]	A _{max} – A _{min} [m²]	m [kg]	∆ A/m [m²/kg]
Galileo FOC	1.32	3.04	1.99	700	0.0028
GPS III	7.50	4.00	4.50	2161	0.0021
GPS IIR	4.11	4.25	1.80	1080	0.0017
GPS IIF	5.72	5.40	2.47	1633	0.0015
GPS IIA	2.72	2.88	1.24	930	0.0013

Sensitivity to solar radiation pressure (SRP)

- Plotting of the satellite body's cross sectional area (A) exposed to sunlight as function of the Sun elevation angle ("beta prime")
- Variation of A over the arc depends on beta prime and so does the sensitivity against SRP
 - The lower the Sun, the larger the variability of A and of the force acting on A
- Increasing sensitivity for Block III SVs when going below 34° beta angle

Empirically-derived radiation force models

- Models developed based upon up to 2.5 years of daily GPS orbits from ESOC's MGNSS Final processing and the following low-order Fourier series in body-frame XZ plane:

 $X = XS1\sin(\epsilon) + XS2\sin(2\epsilon) + XS3\sin(3\epsilon)$ $Z = ZC1\cos(\epsilon) + ZS2\sin(2\epsilon) + ZS4\sin(4\epsilon)$

- SVN 74-75 showing different response to radiation pressure compared to SVN 76-78
 - Requires creation of separate, satellite-specific models for SVN 74 and 75
 - Fourier models for SVN 76-78 fairly consistent and similar to box-wing

Model evaluation

- Generate 24-hour arc test solutions spanning January 2020 to May 2022
 - 150 station global network
 - Five solutions based on identical data, the only difference being the force model applied (see below)

Force model	Parameterization
ECOM-1 only	Five-parameter ECOM (D0, Y0, B0, BC, BS) plus three tightly constrained along- track CPRs (A0, AC, AS) and no a-priori model
ECOM-2 only	Same as strategy 1 but with additional twice-per-revolution terms (D2C, D2S) in satellite-Sun direction
ECOM-1 + BW	Same as strategy 1 but with a-priori box-wing model (Steigenberger et al. 2020)
ECOM-1 + Fourier	Same as strategy 1 but with a-priori Fourier model
ECOM-2 + Fourier	Same as strategy 2 but with a-priori Fourier model

- Check radiation pressure estimates and variability over beta angle
- Compute "overlaps" at midnight epoch as "worst case" estimate of the satellite orbit quality

ECOM & CPR estimates

Overlap results

→ THE EUROPEAN SPACE AGENCY

*

+

Summary & Conclusions

- GPS Block III spacecraft more sensitive to SRP force as its Block II predecessors
- Low-order Fourier models to account for combined radiation forces acting on first five SVs developed
- Fourier approach valuable tool when spacecraft surface properties are missing
- Use of Fourier models along with ECOM-1 leading to 25 percent reduction in 3D orbit overlap RMS over solution with ECOM-1 only
 - Orbit component benefiting most from advanced modelling is across-track
 - Results as good as or even better than those with box-wing or seven-parameter ECOM-2
- Remaining systematics in some of the ECOM estimates, especially "BC" (see p. 7)
- More work needed to
 - identify optimal set of Fourier terms and
 - derive models for other GNSS satellites (e.g. BeiDou)

💳 💶 📲 🚍 💳 🛶 🛛 🖉 🚟 🚍 📲 📲 🚍 📲 🔤 🛶 🔯 🛌 📲 🗮 🚍 🛨 📰 📾 🏘 → The European Space Agen(`