

Nutzungspotenziale von GNSS für die Raumfahrt: GNSS – Space Service Volume

Global Navigation meets Geoinformation 2021, ESA/ESOC, Darmstadt, 17 Juni 2021

Prof. Dr.-Ing. Werner Enderle – ESA/ESOC - Navigation Support Office

Introduction – Definition of Interoperable GNSS Space Service Volume (SSV)

- Only GPS and Galileo (since 2020) have a definition for SSV
- Definition for GPS SSV is different to definition of Galileo SSV
- UN International Committee on GNSS (ICG) Space Use Subgroup provided a definition of an interoperable GNSS SSV

Introduction – Space User Community

Space User Community is Very DIVERSE Orbital Regime (LEO,..., Moon) Size of Spacecraft (CubSat, ISS) Applications (Earth Obs, Com, Sci) Single Sat, Formation Flying Level of Accuracy (100m, <5cm) Navigation Concept (on-board, Ground)

Space Users Benefits and Applications – Benefits

Performance

- On-board generation of Position, Velocity and Time (PVT) with high accuracy
- Interoperable GNSS SSV allows development of new positioning concepts/algorithms tailored to specific mission needs
- Precise Orbit Determination (POD) highest possible accuracy
- Operational
- New operations concepts with reduced Ground interaction
- Increase of on-board autonomy
 - Increase of robustness of spacecraft navigation and operations resilience
- Technology
 - Enabler for new mission and service concepts
 - Development of GNSS Receiver core technology

Space Users Benefits and Applications - Applications

- Position, Velocity and Time (PVT) for on-board Navigation
- Precise Orbit Determination Highest Level of Accuracy (onground or on-board)
- On-board Attitude Determination (3-Axis or spinning SV)
- Rendezvous and Docking
- Time synchronisation
- Launch Vehicle Range Operations
- Earth Science/Science
- Manoeuvre calibration
- Relative Navigation for Sat Formation Flying or Sat Constellation

Space Users Benefits and Applications - Examples

Joint ESA-NASA Galileo/GPS Experiment Onboard the ISS

Joint ESA/NASA Project -Demonstration of added value of GNSS SSV – Visibility of GAL/GPS SV

• First Position Fix in space from GAL/GPS E5a/L5

Space Users Benefits and Applications - Examples

GNSS based Precise Orbit Determination for ESA's PROBA-3 Mission

- ESA's PROBA-3 mission is a Technology Demonstration Mission for high-precision formation-flying of a pair of satellites in an HEO orbit
- Important: More Observations -> Better Orbit Determination Accuracy
- Precise Orbit Determination Accuracy: absolute 15cm, relative 3mm

Space Users Benefits and Applications - Examples

Impact of inclusion of GNSS Side Lobes Signals in Simulations for Gateway (based on models, in orbit measurements and/or data released by the GNSS service providers)

Predicted Gateway GPS/Galileo visibility (20 dB-Hz; ESA/ESOC)

Roadmap for Utilization in ESA Missions 1/2

ISS GAL/GPS Receiver on-board the ISS First E5a/L5 only position fix in space

Sentinel – 6 A Precise Orbit Determination based on dual freq. GAL/GPS Receiver

PROBA - 3

absolute and relative Precise Orbit Determination based on dual freq. GAL/GPS Receiver

Roadmap for Utilization in ESA Missions 2/2

Lunar Pathfinder

- Galileo/GPS receiver and also a Laser Reflector onboard
- First time ever that such a combination is lying on a mission to the Moon
- Precise Orbit Determination Experiment based on GNSS and Laser Ranging

2023

GATEWAY

Proposal was made for on-board navigation and Precise Orbit Determination based on GAL/GPS Receiver

Future Vision

GNSS as an integral future infrastructure element for Spacecraft Navigation for missions to Moon and Mars 202x

Conclusions

- The interoperable multi-GNSS Space Service Volume (GNSS SSV) offers enormous benefits for space users and is an enabler for future advanced missions (Improved signal availability, Improved navigation performance)
- The number of Space Users in all orbital regimes, which are relaying on GNSS will grow significantly over the next 5 years
 - from several 100's to several 10000's
- With advanced GNSS equipment, GNSS signals can be tracked and used for navigation within Lunar missions
- ESA supports international activities related to the GNSS SSV, like ICG, IGS, IOAG, ISECG, CCSDS,...