

Development of an Interoperable GNSS Space Service Volume – The GNSS SSV Booklet

Werner Enderle (ESA)

Co-Chair of ICG WG-B Space Applications Subgroup

Munich Satellite Navigation Summit 2019, Munich, Germany, 26 March 2019

International Committee on Global Navigation Satellite Systems

GNSS High-Altitude Space Users – Historical Background

Significance:

	Late 1990s: Initial experiments (Falcon Gold, Equator-S)	Development and launch of new generation of GNSS
	2000–2001: AMSAT OSCAR-40 & bent-pipe from GEO	constellations drives coordination between GNSS constellation providers to support high-altitude space users.
	2006: Specification of the GPS Space Service Volume	Solution: Define a <i>Multi-GNSS Space</i> Service Volume.
	Late 2000s & 2010s : Transition to operational use, expansion of GNSS constellations	Key objective : Support high-altitude mission designers seeking to utilize multiple GNSS constellations
þ	2015–2018: Development of the Multi-GNSS Space Service Volume	via data sharing, performance characterization, and
Technical	developments Policy developments	Interoperability. Slide 2

International Coordination via the UN ICG

The United Nations International Committee on GNSS (ICG) brings together all six GNSS providers and other voluntary participants to:

- Promote the use of GNSS and its integration into infrastructures
- Encourage compatibility and interoperability among global and regional systems

The ICG consists of four working groups. Of these two have primary roles related to high-altitude users:

WG-S: Systems, Signals and Services—Ensures underlying compatibility and interoperability of signals

WG-B: Enhancement of GNSS Performance, New Services and Capabilities GNSS SSV Task Force and since 2018 Space Applications Subgroup leads development of the Multi-GNSS Space Service Volume concept and related activities

Definition of GNSS Space Service Volume

SIMULATIONS CONCEPT AND CONDUCTED ANALYSIS

Key objectives for simulations was to demonstrate and quantify the improvements in signal availability by using interoperable, multi-GNSS receivers within the SSV

Assumptions for Simulations

- Constellations nominal constellations, as given by Service Providers
- GNSS Antenna Transmitting Pattern as given by Service Providers
- Space User Antenna Pattern commercially available
- Link Budget Calculations no receiver HW considered
- Signal characteristics as given by GNSS Service Providers
- Receiver Acquisition threshold of 20 dB-Hz was used
- Data simulated over 14 days with interval of 60 sec
- Realistic mission scenarios taking into account
 - spacecraft attitude
 - antenna orientation
 - Placement of antenna on spacecraft

Assumptions for Simulations

GNSS TX Antenna Pattern

User RX Antenna Pattern

Assumptions for Simulations

GNSS provider input for the SSV performance characteristics

Expected performance data (extracted sample shown here) was requested via a "template" for each:

- GNSS constellation
- Civil signal
- SSV characteristic

Data was requested for nominal constellations, and for primary **main lobe signals** only.

Supplied data represents minimum performance **expectations** for each signal; specification and requirement status varies by provider.

Data is intended to provide a **conservative baseline performance level** for mission planning activities.

Band	Const- ellation	Minimum Received Civilian Signal Power	
		0dBi RCP antenna at GEO (dBW)	Reference off- boresight angle (°)
L1/E1/B1	GPS	-184 (C/A) -182.5 (C)	23.5
	GLONASS	-179	26
	Galileo	-182.5	20.5
	BDS	-184.2 (MEO)	25
		-185.9 (I/G)	19
	QZSS	-185.5	22
L5/L3/E5/	GPS	-182	26
B2	GLONASS	-178	34
	Galileo	-182.5 (E5b)	22.5
		-182.5 (E5a)	23.5
	BDS	-182.8 (MEO)	28
		-184.4 (I/G)	22
	QZSS	-180.7	24
	NavIC	-184.54	16

Simulation Scenarios

Simulation Results – Global SSV Performance

Upper SSV – GEO Altitude					
		Signal Availability in % Max Outage Duration		uration in min	
Band	Constellation	At least 1 Signal	4 or more Signals	At least 1 Signal	4 or more Signals
	Global Systems	79 – 94	0.6 - 7	48 - 111	*
L1/E1/B1	QZSS	0	0	*	*
	Combined	99.9	89.9	33	117
	Global Systems	93 - 99.9	4-60	7 – 77	1180-*
L5/L3/E5a/B2					
	Regional Systems	1 - 30	0-1.5	*	*
	Combined	100	99.9	0	15

Lower SSV					
		Signal Availability in %		Max Outage Duration in min	
Band	Constellation	At least 1 Signal	4 or more Signals	At least 1 Signal	4 or more Signals
	Global Systems	99.9 - 100	95 - 100	0 - 11	0 - 60
L1/E1/B1	QZSS	99.6	79.4	197	*
	Combined	100	100	0	0
	Global Systems	100	99.9 - 100	0	0 - 16
L5/L3/E5a/B2	Regional Systems	98 - 99.6	51 - 79	197 - 348	*
	Combined	100	100	0	0

Summary

- The simulation activities were fully supported by all GNSS Service Providers
- Six Space Agencies were involved in the simulation and analysis activities coordinated by ESA and NASA
- A total number of 49 million signals have been processed in the context of the simulation activities
- The results between the individual simulations for the same scenario showed a consistency for the Link Budget calculations of 0.015 dB-Hz
- The simulations were conducted in 3 phases and comprised a total of 4 scenarios, one Global (lower and upper SSV) and three Mission Specific (GEO, HEO and Lunar Transfer Trajectory)
- Only the main lobe signals were used in simulations, this means that results are considered as conservative Slide 11

Conclusions

- The interoperable multi-GNSS Space Service Volume offers enormous benefits for space users and can be seen as an enabler for future advanced missions
 - Improved signal availability
 - Improved navigation performance
- With advanced GNSS equipment, GNSS signals can be tracked and used for Navigation on Moon missions
- Simulation results are conservative, because only signals in the main lobe were used. If side lobe signals will also be taken into account, the signal availability will significantly increase

Interoperable Multi GNSS SSV Booklet

UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS

	~
V and	1 march
· ACE	A HANN
AXXX I	ALX A
Global MM	2 MANHAD
	DAL
Navigation	THEY .
Satellite	GPS CLOBASS
	GLEMMAN
	GALTLED

Photo © 554

 Booklet was published on 01 Nov 2018

- Identifier: ST/SPACE/75
- Electronically available at:
 - <u>http://www.unoosa.org/oosa/en/ourwork/</u> icg/documents/publications.html
 - <u>http://www.unoosa.org/res/oosadoc/data</u> /documents/2018/stspace/stspace75_0_
 <u>html/st_space_75E.pdf</u>
- Hard copies are provided to UNHQ (New York) for public sales.