

GNSS Analysis in a Multi-GNSS and Multi-Signal Environment

Erik Schönemann, Tim Springer Florian Dilssner, Loukis Agrotis, Werner Enderle

Navigation Support Office, ESA/ESOC Darmstadt, Hessen, Germany

EGU 30 April 2014, Vienna, Austria

Introduction

- GPS and GLONASS are being modernized
- Galileo and Beidou are emerging
- New signal modulations
 - C/A, P, BOC, MBOC, AltBOC
- Additional frequencies
 - L1, L2, L5 (GPS), E1, E5, E6 (Galileo), B1, B2, B3 (Beidou), etc.
- Data and Pilot components
 - I/Q
- Different observations (tracking, multipath mitigation)
- Vast number of possible linear combinations
- Improved on-board satellite clocks
 - Treating clocks as "white noise" will constitute a significant loss of information

How to optimally process signals from multiple GNSS or on more than two frequencies

The ESA/ESOC Answer

- <u>RAW processing</u>

- Satellite clocks are getting very stable
 - \Rightarrow Avoid differencing that cancels out clocks
- Multi-frequency processing should only "estimate" ionosphere once
- Number of possible linear combinations exploding
 - ⇒ Avoid linear combinations, esp. those that cancel ("estimate") the ionosphere
- Simplest solution is to process the observations "as they are"

⇒ <u>RAW processing</u>

- Besides being "simple" it allows for
 - Monitoring all signals and their biases
 - Straightforward Integer Ambiguity resolution
 - Including inter system fixing? At least on interoperable signals
 - Satellite PCO/PCV estimation per frequency!

Experiments

- All results shown in the following are based on MGEX data
 - MGEX: IGS Multi GNSS Experiment
 - > 83 globally distributed multi GNSS stations (GPS+GLO+GAL)
 - ~34 stations tracking Beidou
 - ~22 stations tracking QZSS
- Analysis focussed on a 16 day data set from March 2014
 - No routine processing but in-depth analysis of the data
 - Data set processed using "normal" (ionosphere free) and "raw" processing method

MGEX stations used

A look at the Individual Phase Signals

A look at the Individual Signals (now ignoring GPS L5 and LC)

Same as previous but now scaled the RMS a posteriori with sigma = sigma * GPS L1 freq² / signal freq²

Similar as previous but now scaled the RMS a priori with sigma = sigma * GPS L1 freq² / signal freq²

Satellite Antennas PCO/PCV

GPS IIA (Credits: Geo++)

GPS IIR (Credits: Lockheed)

GPS IIF (Credits: Boeing)

GLONASS-M (Reshetnev)

GLONASS-K1 (Reshetnev)

GALILEO-IOV (and GIOVE-B) (ESA)

 \rightarrow 12 element helix design common to all GPS and GLONASS antenna types \leftarrow European Space Agency \rightarrow GALILEO is very different

Satellite "azimuth" (yaw) angle dependent residuals for Galileo

Strong code residual pattern for BeiDou (strongest on B1/C2)

2 day orbit overlaps Ionosphere free LC vs. Raw

Summary

- The raw processing method has (significant) potential for signal analysis
 - In particular when the third signal is on a frequency that is significantly different from the other two
 - With only two frequencies (signals), except for bad conditioned cases, the "raw" method shows comparable results
- The noise of the ionosphere free linear combination appears to be more than a factor of 3 higher compared to the noise of the original observations (L1, L2, etc.)
- Differential bias stability (between signals/frequencies) is a key factor for combinations of more then two signals/frequencies
 - In this sense the differential GPS phase biases appeared to be problematic
- Galileo E5 (AltBOC) has "outstanding" performance on both code and phase measurements!

Conclusions

Main benefits of the ESA/ESOC "**RAW processing**" method are:

- Avoidance of noise and multipath amplification
 - Raw observations have significantly lower noise
- Ionosphere is obtained from phase, thus keeping the code noise low
 - Especially important for high quality code signals (AltBOC)
- Ambiguity resolution becomes trivial
 - In particular with Galileo AltBOC (E5) signal
- Access to PCO/PCV on the individual frequencies
- Access/visibility of original biases
 - The biases on the individual (raw) observations
- Availability of biases for PPP and other applications
 - Biases can be "serviced", e.g. by the IGS

For more information see:

Erik Schönemann: Analysis of GNSS raw observations in PPP solutions. Schriftenreihe der Fachrichtung Geodäsie (42). Darmstadt. ISBN 978-3-935631-31-0 [Book], (2013) http://tuprints.ulb.tu-darmstadt.de/3843/

THANK YOU

Erik.Schoenemann@esa.int

Announcement

ESA/ESOC is organising a dedicated POD conference at ESOC, Darmstadt, Germany in May 2015 (TBC). Details will be announced in June 2014. The POD conference will cover all areas of POD, including:

• Constellations and orbits

GNSS, LEO, MEO, GTO, GEO

• Techniques

GNSS, Satellite Laser Ranging, Doris, Radar Altimetry

- Algorithms and models Force models, Data processing, Optimisation, ...
- Hardware and Processing concepts Onboard Receivers, Real Time, Batch processing ...
- Interaction between different POD stake holders
 Service providers System providers Science community Er

Service providers, System providers, Science community, End Users,...