

SLR measurements and their importance for Galileo

Werner Enderle, Daniel Navarro-Reyes, <u>Francisco Gonzalez</u>, Erik Schoenemann, René Zandbergen

26/10/2015

Issue/Revision: 1.0 Reference: Status: ESA UNCLASSIFIED - For Official Use

European Space Agency

Outline

- 1. ESA/Galileo support to ILRS
- 2. SLR tracking of Galileo satellites
- 3. Galileo benefits from SLR
- 4. Galileo, next steps
- 5. Discussion

ESA support to ILRS

ESA agreed to provide:

- Orbit predictions to ILRS:
 - ESOC as prediction centre
 - GCC (Oberpfaffenhofen) as backup and for initial tracking
- Galileo satellite information to ILRS
 - Reflector shape
 - Cube geometry and material
 - Reflector centre of phase position
 - Satellite centre of mass position

ESA support to ILRS ESA sends predictions for all active Galileo satellites Galileo (gal), ESA (esa)

galileo101_cpf_151012_7851.esa galileo101_cpf_151012_7851.gal galileo102_cpf_151012_7851.esa galileo102_cpf_151012_7851.gal galileo103_cpf_151011_7841.gal galileo103_cpf_151012_7851.esa galileo104_cpf_151011_7841.gal galileo104_cpf_151012_7851.esa galileo201_cpf_151011_7841.gal galileo201_cpf_151012_7851.esa galileo202_cpf_151011_7841.gal galileo202_cpf_151012_7851.esa galileo203_cpf_151011_7841.gal galileo204_cpf_151010_7831.gal galileo204_cpf_151012_7851.esa

38.7 kB 10/12/15, 5:51:00 AM 39.2 kB 10/12/15, 8:41:00 AM 38.7 kB 10/12/15, 5:51:00 AM 10/12/15, 8:41:00 AM 39.2 kB 10/11/15, 5:41:00 AM 39.2 kB 10/12/15, 5:51:00 AM 38.7 kB 39.2 kB 10/11/15, 5:41:00 AM 38.7 kB 10/12/15, 5:51:00 AM 10/11/15, 5:51:00 AM 39.2 kB 38.7 kB 10/12/15, 5:51:00 AM 39.2 kB 10/11/15, 6:01:00 AM 38.7 kB 10/12/15, 5:51:00 AM 39.2 kB 10/11/15, 6:01:00 AM 39.2 kB 10/10/15, 6:01:00 AM 38.7 kB 10/12/15, 5:51:00 AM

ESA support to ILRS Post manoeuvre CoM offsets provided to ILRS

Galileo-101	Galileo-102
Issue Date: 2014-11-20T17:34:07.239	Issue Date: 2014-11-20T17:34:07.239
Satellite Mass: 696.815 kg	Satellite Mass: 694.778 kg
CoM X: 1.205844 m	CoM X: 1.205333 m
CoM Y: 0.628967 m	CoM Y: 0.628807 m
CoM Z: 0.553436 m	CoM Z: 0.551409 m
Galileo-103	Galileo-104
Issue Date: 2014-12-01T15:24:04.447	Issue Date:2014-11-20T17:34:07.239
Satellite Mass: 697.63200000000 kg	Satellite Mass: 695.652 kg
CoM X: 1.2052910000000 m	CoM X: 1.20532 m
CoM Y: 0.62957700000000 m	CoM Y: 0.628956 m
CoM Z: 0.55280900000000 m	CoM Z: 0.551509 m

Galileo-201	Galileo-202
Issue Date: 2015-05-11T12:25:45.141	Issue Date: 2015-05-11T12:25:45.141
Satellite Mass: 660.977000000000 kg	Satellite Mass: 662.64600000000 kg
CoM X: 0.33170000000000 m	CoM X: 0.31404300000000 m
CoM Y: -1.3500000000000E-002 m	CoM Y: -1.25910000000000E-002 m
CoM Z: 0.56190000000000 m	CoM Z: 0.56231300000000 m
Galileo-203	Galileo-204
Galileo-203 Issue Date: 2015-05-11T12:25:45.141	Galileo-204 Issue Date: 2015-05-11T12:25:45.141
Galileo-203 Issue Date: 2015-05-11T12:25:45.141 Satellite Mass: 706.16200000000 kg	Galileo-204 Issue Date: 2015-05-11T12:25:45.141 Satellite Mass: 706.61900000000 kg
Galileo-203 Issue Date: 2015-05-11T12:25:45.141 Satellite Mass: 706.16200000000 kg CoM X: 0.25911000000000 m	Galileo-204 Issue Date: 2015-05-11T12:25:45.141 Satellite Mass: 706.61900000000 kg CoM X: 0.26060700000000 m
Galileo-203 Issue Date: 2015-05-11T12:25:45.141 Satellite Mass: 706.16200000000 kg CoM X: 0.259110000000000 m CoM Y: -9.21100000000000E-003 m	Galileo-204 Issue Date: 2015-05-11T12:25:45.141 Satellite Mass: 706.61900000000 kg CoM X: 0.26060700000000 m CoM Y: -9.2960000000000E-003 m

Werner Enderle, Daniel Navarro-Reyes,

5

Galileo IOV LRA

IOV LRA, as reported on SLR Mission Request

- 1. 84 Corner Cube Reflectors (CCR)
 - a. doped fused silica (Suprasil 311) glass tetrahedron
 - b. no metallic coating on reflective surfaces
 - c. front surface coated with ITO
 - d. aperture face is included in a circle of 43 mm diameter
 - e. Minimum aperture 33 mm diameter
 - f. height of the tetrahedron is 23.3 mm
 - g. Iso-static mounting to plate
 - h. N = 1.46, critical angle16.9 deg
 - which covers the entire LRR operating range (Earth radius of 12.44°)
 - no coating, total reflection is obtained without any loss
 - i. Velocity aberration compensation 0.8 arcsec (dihedral offset)
 - j. CCR are randomly oriented
 - k. LRA Centre of Phase TBD after Qualification Tests

Werner Enderle, Daniel Navarro-Reyes, Francisco Gonzalez, Erik Schoenemann, F

23.3mm

ф 43mm

φ 33mm

4 IOV S/C, manufactured by Astrium (G) Array type: Planar, 84 Corner Cube Reflectors (CCR). Array manufacturer: North China Research Institute of Electro Optics

Phase centre of the LRA relative to a satellite-based origin:

```
X = 2298 mm, Y = 595 mm, Z = 1174 mm
```

Cube:

Parallel to the LRA plate, random rotation perpendicular to plate. Height 23.3 mm, diameter 43 mm (aperture) N = 1.46, critical angle 16.9 deg Dihedral angle offset(s) and manufacturing tolerance: 0.80 arcsec Reflective surface uncoated, incident surface coated with ITO

FOC LRA location on S/C

14 FOC1 + 8 FOC2 S/C, manufactured by OHB, Payload by SSTL

Array type: Planar, 60 CCR.

Array manufacturer: Institute for Precision Instrument Engineering (PSI)

Previously used on the following missions:

Glonass-729 (launched on 25 December 2008)

Glonass-736, Glonass-737, Glonass-738

Phase centre of the LRA relative to a satellite-based origin:

X = -703mm, Y = -27.5mm, Z = 1117.45mm

Cube

Parallel to the LRA plate, random rotation perpendicular to plate.
Height 19.1 mm, diameter 28.2 mm (aperture)
Fused silica KY1 n=1.46 for 532 nm
Dihedral angle offset(s) and manufacturing tolerance: 0.50 arcsec
Reflective surface uncoated, no anti-reflection coating on front

ILRS Mission Priorities

						1		
23	GLONASS- 123	glonass123	1004102	9123	Russia	19,100	65	
24	GLONASS- 125	glonass125	1100901	9125	Russia	19,100	65	
25	GLONASS- 128	glonass128	1106401	9128	Russia	19,100	65	
26	GLONASS- 129	glonass129	1106402	9129	Russia	19,100	65	
27	GLONASS- 133	glonass133	1403201	9133	Russia	19,100	65	
28	GLONASS- 134	glonass134	1407501	9134	Russia	19,100	65	
29	COMPASS- M3	compassm3	1201801	2004	China	21,528	55.0	
30	Galileo-101	galileo101	1106001	7101	ESA	23,220	56	
31	Galileo-102	galileo102	1106002	7102	ESA	23,220	56	
32	Galileo-103	galileo103	1205501	7103	ESA	23,220	56	
33	Galileo-104	galileo104	1205502	7104	ESA	23,220	56	
34	GPS-36	gps36	9401601	3636	U. S. DOD	20,030	64.8	
35	Galileo-201	galileo201	1405001	7201	ESA	23,220	56	
36	Galileo-202	galileo202	1405002	7202	ESA	23,220	56	
37	Galileo-203	galileo203	1501701	7203	ESA	23,220	56	
38	Galileo-204	galileo204	1501702	7204	ESA	23,220	56	

SLR measurements Glonass (1 January – 11 October)

	NPT / day ¹⁾	% days with measurements
GLO-714	5	83.44
GLO-715	9	87.55
GLO-716	12	95.60
GLO-717	9	86.81
GLO-719	7	87.91
GLO-720	8	92.31
GLO-721	10	89.74
GLO-723	10	90.84
GLO-725	6	56.78
GLO-730	7	88.28
GLO-731	8	89.01

SLR measurements Glonass (1 January – 11 October)

	NPT / day ¹⁾	% days with measurements
GLO-732	9	92.31
GLO-733	7	89.01
GLO-734	10	94.87
GLO-735	10	92.67
GLO-736	13	96.34
GLO-737	23	99.63
GLO-738	16	98.53
GLO-742	17	98.53
GLO-743	14	97.44
GLO-744	19	98.53
GLO-745	26	99.27
GLO-801	12	91.94

SLR measurements Galileo IOV/FOC (1 January – 11 October)

		NPT / day ¹⁾	% days with measurements		
	GAL-101	16	96.34		
	GAL-102	15	95.97		
-	GAL-103	17	95.97		
	GAL-104	17	97.07		
FOC	GAL-201	9	90.73		
	GAL-202	9	83.80		
	GAL-203	10	72.93		
	GAL-204	9	80.70		

	NPT / day ¹⁾	% days with measurements
Galileo IOV	16	96.34
Galileo FOC	9	82.04
Glonass	12	91.24

Galileo benefits from ILRS Validation of operational Galileo orbit products

Galileo benefits from ILRS Validation of operational Galileo orbit products

OVF weekly report 26 September 2015

Galileo benefits from ILRS Validation of operational Galileo orbit products

Werner Enderle, Daniel Navarro-Reyes, Francisco Gonzalez, Erik Schoenemann, René Zandbergen | 26/10/2015 | Slide 19

ESA UNCLASSIFIED - For Official Use

Galileo benefits from ILRS Model validation Orbit difference CODE vs. box-wing

Question: Which is the correct model?

Galileo benefits from ILRS Model validation 2-way SLR residuals (without box-wing)

Galileo benefits from ILRS Model validation 2-way SLR residuals (with box-wing)

SLR residuals answer the question of the correct model!

Studies:

Improved GNSS – Based precise orbit determination by using highly accurate clocks

Idea: Study impact of clock modelling POD and global parameters

Orbit/SRP Modelling for Long Term Prediction

Idea: Study advanced SRP models to improve long term orbit predictions

Experiments:

Fundamental Physics with Galileo: General Relativity Experiment (GREAT)
 Idea: Testing the laws of Relativity
 Unique opportunity PHM in an elliptical orbit

Galileo next steps

FOC-M4 (Launch on Soyuz)

GSAT0213-14 at OHB Bremen, under integration

FOC-M7 (Launch on Ariane-5)

GSAT0215-18 at OHB Bremen, under integration

FOC-M8 (Launch on Ariane-5)

GSAT0219-22 at OHB Bremen, under integration

Conclusions

ESA supports the ILRS by providing

- Galileo orbit predictions
- Selected Galileo satellite information (e.g. Reflector shape, CoM, etc.)

SLR measurements are of great benefit for:

- Galileo orbit validation
- Galileo force model development and validation

Points for improvement:

 It would be very much appreciated if the position of the Galileo satellites in the ILRS mission priority list could be increased and therefore be tracked more often.

ESA would like to thank the entire ILRS community for its very much appreciated support and good cooperation.