Analysis of Multi-GNSS Observations and the Challenges of their Combination

1 | F. Reichel | Analysis of Multi-GNSS Observations and the Challenges of their Combination | 27/10/15

Content

- I. Introduction
- II. Experimental Setup
- III. RINEX 3.02 Observation Type Analysis
- IV. Impact on static PPP Analysis
- V. Summary and Conclusion

Introduction

Signal Strength S1A S1B S1C S1X S1Z S5I S5Q S5X S7I **S7Q** S7X **S8**I **S8Q** S8X S6A S6B S6C S6X S6Z

- The RINEX 3.02 format offers a factor of ~4 more observation types than RINEX 2.11 for Galileo and a factor of ~6 for GPS (not taking into account Glonass, Beidou, QZSS)
 - Significant increase in number of frequencies and signals
 - Increase in number of GNSS systems
- Huge increase of observation processing complexity
- Generation of mixed observation type 'X' is not clearly defined

GNSS System	Freq. Band /Frequency	Channel or Code	Observation Codes				C	CNICC	Ener Dand		Observation Codes			
			Pseudo Range	Carrier Phase	Doppler	Signal Strength		System	/Frequency	Channel or Code	Pseudo	Carrier	Doppler	
GPS	L1/1575.42	C/A	CIC	LIC	DIC	SIC					Kange	Fnase		
		L1C (D)	C1S	L1S	D1S	S1S		Galileo		A PRS	CIA	LIA	DIA	
		L1C (P)	CIL	L1L	D1L	S1L				B I/NAV OS/CS/SoL	C1B	L1B	D1B	
		L1C (D+P)	C1X	L1X	DIX	SIX			E1 / 1575.42	C no data	CIC	LIC	DIC	
		P	C1P	L1P	D1P	SIP			Dirribroniz	P+C	CIV	LIV	DIV	
		Z-tracking and similar	C1W	L1W	D1W	S1W				DTC .		LIA	DIA	
		(AS on)	CIN	1.137	DIV	6137				A+B+C	CIZ	LIZ	DIZ	
		Y	CIM	LIY	DIY	SIY				I F/NAV OS	C5I	L5I	D5I	
		IVI codeless		LIN	DIM	SIN			E5a / 1176.45	Q no data	C5Q	L5Q	D5Q	
	L2/1227.60	C/A	C2C	L1N L2C	D1N D2C	S1N S2C				I+Q	C5X	L5X	D5X	
		L1(C/A)+(P2-P1)	C2D	L2D	D2D	S2D				I I/NAV OS/CS/SoL	C7I	L7I	D7I	
		(semi-codeless)	C28	1.25	D25	\$25			E5b / 1207.140	Q no data	C7Q	L7Q	D7Q	
		$L_{2C}(L)$	C2L	L2D	D2L	S2L				I+Q	C7X	L7X	D7X	
		L2C (M+L)	C2X	L2X	D2X	S2X				I	C8I	L8I	D8I	
		Р	C2P	L2P	D2P	S2P			ES(ESa+ESb) /	0	C80	L8O	D8O	
		Z-tracking and similar (AS on)	C2W	L2W	D2W	S2W			1191.795	I+Q	C8X	L8X	D8X	
		Y	C2Y	L2Y	D2Y	S2Y	ĺ			A PRS	C6A	L6A	D6A	
		М	C2M	L2M	D2M	S2M				B C/NAV CS	C6B	L6B	D6B	
		codeless		L2N	D2N	S2N			E6/1278.75	C no data	C6C	L6C	D6C	
	L5/1176.45	I	C5I	L5I	D5I	S5I		2011210112		B+C	C6X	L6X	D6X	
		Q	C5Q	L5Q	D5Q	S5Q				AIDIC	COA	LOA	DOA	
		I+Q	C5X	L5X	D5X	S5X				A+B+C	COZ	LOZ	D6Z	

The Receiver Independent Exchange Format (RINEX 3.02)

All 5 GNSS (RINEX 3.02) ~70 code & ~70 phase observation types

Introduction/Motivation

Motivation

 Observation type selection and joint processing of multi-frequency/multi-GNSS observation types

Questions

- What are the characteristics of the different observation types and different receivers?
- How stable and correlated are observation types of the same frequency?
- How to jointly process observation types from multiple frequencies and GNSS?
 - Processing approach
 - Observation type weighting
 - Bias handling

Zero-Baseline setup at ESA/ESOC

- Shown PPP results are based on ESOC orbit & clock products
- RINEX 3.02 data from the ESOC site were used for the analysis (days 248/290 of year 2015)

Galileo	1C	1X	5Q	5X	7Q	7X	8Q	8X	GPS	1C	1W	2W	2L	2X
ESO1	Х		Х		Х		Х		ESO1	Х	C only	Х	Х	
ESO2	Х		Х		Х		Х		ESO2	Х	C only	Х	Х	
ESOB		Х		Х		Х		Х	ESOB	Х	Х	Х		Х
ESOC/ EST1	х		Х		Х		Х		ESOC/ EST1	х	C only	х	х	

- Comparison of observation types within a GNSS system
- 1. Code multipath combination from RINEX 3.02 observation types

•
$$\mathbf{MP}_{i} = \mathbf{Pr}_{i} - \left(\frac{\gamma + 1}{\gamma - 1}\right) \cdot \mathbf{Ph}_{i} + \left(\frac{2}{\gamma - 1}\right) \cdot \mathbf{Ph}_{j}, \qquad \gamma = \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{j}}\right)^{2}$$

- Assumptions
 - Zero mean
 - Phase multipath + noise << code multipath</p>
- 2. Direct comparison of observation types by forming differences $(Ph_k Ph_l \text{ and } Pr_k Pr_l)$

Code Multipath – GPS

- Code multipath combination from RINEX 3.02 observations
- GPS (G17) code multipath as seen from station ESOB for observations:
 - 1C
 - 1W
 - 2W
 - 2X

Code Multipath RMS - GPS

 Code multipath RMS for GPS satellite G17 on day 15 248 without elevation cutoff → high MP environment

Code Multipath – Galileo

Station: esob

1.5

Sat: E12

Day: 15 248

1X 5X × 7X 8X ж

- Code multipath combination from **RINEX 3.02** observations
- Galileo (E12) code multipath as seen from stations at ESA/ESOC for observations:
 - IC (ESOB: 1X)
 - 5Q (ESOB: 5X)
 - 7Q (ESOB: 7X)
 - 8Q (ESOB: 8X)
- \rightarrow Different observation type and receiver characteristics

Code Multipath RMS - Galileo

TECHNISCHE UNIVERSITÄT DARMSTADT

Code multipath RMS for Galileo satellite E12 on day 15 248 without elevation cutoff \rightarrow high MP environment

- ESOB tracks X component, whereas the other receivers track C and O
- Low code noise/multipath visible on F5 AltBOC
- ESO2 Frequency and ESOC observation type/receiver dependent characteristics ESOB
 - These characteristics should be taken into account for processing (observation weighting)

Phase Observation Differences esa

- GPS phase observation differences on the same frequency
- No observations available for Galileo
- No drift between different observation types
- Fix cycle offset between phase observation types

Code Observation Differences

- GPS code observation differences on the same frequency
- Zero mean difference and no drift between observation types
- ESOC/EST1: 1C and 1W signals are not independently tracked
 → High correlation of code observation types

Processing Approaches

- Two different processing approaches are analysed:
- 1. Conventional Ionosphere-Free Linear Combination
 - Standard approach and current main processing strategy
- 2. Raw signal processing (see [1])
 - Raw processing of signals, 'as they are' without forming any combinations
 - Need to estimate additional parameters (eg. Ionosphere)
 - Exploit the advantages of each individual GNSS system and not make reference to one specific system
 - More physical approach

[1] Schönemann, E., Becker, M., & Springer, T. (2011). A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. Journal of Geodetic Science, 1(3), 204–214. doi:10.2478/v10156-010-0023-2

Static PPP Analysis using raw signal processing

- Signal Noise
 - Carrier noise is reduced by a factor of ~3 wrt. Iono-Free LC (theory)
 - Wavelength dependency of signal noise and other factors, like signal power can be taken into account
- Weighting
 - Weighting can be chosen individually for each frequency and observation type, whereas for Iono-Free linear combination, the weighting is given by the LC itself
- Processing
 - Process all observations to estimate all parameters jointly in a single run

Code Residuals

Code Residuals

Code Residuals

Phase Residuals

Phase Residuals

Station: ESOC Sat: E12, Day: 15 290 Phase residuals from 6 10 50 static PPP 70 80 4 Observations weighting: - elevation dependent 2 - frequency dependent Phase Residuals (nn) 5 **1**C Ø 4 **5**Q 3 -2 **7**Q 2 ■8Q -4 1 IF-LC (1C,5Q) 0 -6 Phase Res RMS (mm) -8 6 7 8 9 10 11 12 13 14 Hours of day

Phase Residuals

Summary and Conclusion

- The increasing number of GNSS satellites and signals offers great potential to improve positioning and navigation solutions
- However, there is a huge increase of the GNSS processing complexity, when the vast number of observation types and combinations of observation types is used
- The observation type selection and level of complexity is mainly driven by the application itself
- There is a need to discuss new processing approaches to exploit the full potential of multi-frequency multi-GNSS processing
- Open questions/issues remain:
 - How to handle the large number of (code and phase) biases, when jointly processing mulitple frequencies and different GNSS?
 → Reference signal selection
 - How stable are these biases?

