

Using SLR for GNSS orbit model validation

<u>Claudia Flohrer</u>, Tim Springer, Michiel Otten, Cristina Garcia Serrano, Florian Dilssner, Erik Schönemann, Werner Enderle

ESOC - Navigation Support Office, Darmstadt, Germany

ILRS Technical Workshop 2015 | Matera | Italy 26/10/2015

ESOC's Navigation Support Office

- We are official IGS, ILRS and IDS analysis center
- We process data of all GNSS constellations for Precise Orbit Determination (POD)
- For **P**OD we need detailed models (satellite dynamics), but not all of the data needed for detailed modelling is available
- SLR provides an independent source for validating GNSS satellite orbits and the underlying models
- Within this presentation we focus on the use of SLR for the validation of Box-Wing models to account for Solar Radiation Pressure (SRP) forces acting on the GNSS satellites

Multi-GNSS data processing (2014) Data from ESA and MGEX GNSS Sensor Stations

Solar radiation pressure

Acceleration due to direct SRP is assumed to be:

- constant for the wings (A'_W = const)
- but varying for the box $(A'_B = f(t))$

Claudia Flohrer | ESOC | 26/10/2015 | Slide 4

ESA UNCLASSIFIED - For Official Use

Box-Wing model Surface areas used in NAPEOS

	Box [m ²]			Wing [m ²]	
	Х	Y	Ζ		
GPS-IIA 1)	2.7		2.9	11.9	
GPS-IIR/RM ¹⁾	4.1		4.3	13.9	
GPS-IIF 1)	4.5		5.1	22.0	
GLONASS-M ²⁾	4.2		1.7	30.9	
Galileo-1 (IOV) 1)	1.3		3.0	10.8	
BeiDou ²⁾	6.2	6.8	4.4	40.0	
QZSS ¹⁾	19.2	18.0	9.0	40.0	

¹⁾ data publicly available
²⁾ ESOC tuned public data

Surface areas

min box	max box	wings		
I	I	1	I	1
[m ²]	10	20	30	40

Claudia Flohrer | ESOC | 26/10/2015 | Slide 6

ESA UNCLASSIFIED - For Official Use

European Space Agency

Approx. surface area changes Not absorbed by D0 parameter

	max-min	[m ²]	Rank	Mass [kg]	Area/Mass	Rank
GPS-IIA	1.3		7	975	0.0013	7
GPS-IIR/RM	1.8		6	1100	0.0017	4
GPS-IIF	2.3		4	1450	0.0016	5
GLONASS-M	2.8		3	1400	0.0020	3
Galileo-1 (IOV)	2.0		5	695	0.0028	2
BeiDou	3.2		2	2000	0.0016	5
QZSS	12.2		1	2000	0.0061	1

Validating orbit models with SLR

Number of SLR data (NP) in 2014

(1/4) (2/5) (1/5)

Claudia Flohrer | ESOC | 26/10/2015 | Slide 9

Radial orbit difference – GPS-IIA "with box-wing" minus "without box-wing"

[mm]

Claudia Flohrer | ESOC | 26/10/2015 | Slide 10

ESA UNCLASSIFIED - For Official Use

SLR residuals (2-way) – GPS-IIA

SLR residuals (2-way) – GPS-IIA

Claudia Flohrer | ESOC | 26/10/2015 | Slide 12

ESA UNCLASSIFIED - For Official Use

Radial orbit difference – GLONASS-M "with box-wing" minus "without box-wing"

Claudia Flohrer | ESOC | 26/10/2015 | Slide 13

ESA UNCLASSIFIED - For Official Use

European Space Agency

SLR residuals (2-way) – GLONASS-M

without box-wing

SLR residuals (2-way) – GLONASS-M

with box-wing

Radial orbit difference – QZS-1 "with box-wing" minus "without box-wing"

[mm]

Claudia Flohrer | ESOC | 26/10/2015 | Slide 16

ESA UNCLASSIFIED - For Official Use

European Space Agency

SLR residuals (2-way) – QZS-1

without box-wing

Claudia Flohrer | ESOC | 26/10/2015 | Slide 17

SLR residuals (2-way) – QZS-1

with box-wing

BeiDou attitude model

Potential attitude model improvement

- → Attitude transition from yaw steering to orbit normal mode
- Phase residuals show improvement
- Dedicated SLR tracking for transition periods could help to validate the attitude model

ESA UNCLASSIFIED - For Official Use

Conclusions

- Significant impact of Box-Wing model to account for SRP acceleration has been demonstrated
- Validation of Box-Wing model could be performed using SLR data
- SLR data provide the only independent check of GNSS orbit accuracy (radial comonent) → SLR data is an important mean to validate GNSS orbits and underlying models
- No SLR for GPS (IIR, IIF) → Sensitivity of incorrect SRP modelling is expected to be larger then for IIA
- Many SLR observations for GLONASS allow for more specific analysis (e.g. dependencies on orbital plane)
- More SLR observations are desirable especially for upcoming new GNSS systems (in particular Galileo with larger area/mass), as GNSS orbit modelling issues will increase → SLR gets even more important!
- Dedicated SLR tracking campaigns could also help to improve attitude models (e.g. understanding of attitude transition modes)

THANK YOU

Claudia Flohrer

claudia.flohrer@esa.int

http://navigation-office.esa.int/

Claudia Flohrer | ESOC | 26/10/2015 | Slide 21

ESA UNCLASSIFIED - For Official Use

European Space Agency