

How GNSS spacecraft orientation errors affect solar radiation pressure modelling

<u>F. Dilssner</u>, T. Springer, E. Schönemann, R. Zandbergen, W. Enderle European Space Operations Centre (ESOC)

April 16, 2015 EGU 2015, Vienna, Austria

Outline

- Solar Radiation Pressure (SRP)
- Simple analytical expressions for SRP model errors arising from small spacecraft attitude-biases
- Experimental results
 - GPS Block II/IIA yaw-bias and its contribution to the Y-bias
 - GPS Block IIF heat-shielding protection tests
 - QZSS/BDS SRP modeling at low β -angles
- Summary and conclusions

Solar radiation pressure (SRP)

- Largest non-gravitational acceleration acting on GNSS satellites (~100 nm/s²)
- Depends on optical properties, geometry, and orientation of satellite surfaces wrt the Sun:

$$\vec{p} = -\frac{PA}{m} \cdot \cos \Theta \cdot \left[(1-\rho) \cdot \vec{e}_D + 2 \cdot \left(\frac{\delta}{3} + \rho \cdot \cos \Theta \right) \cdot \vec{e}_N \right]$$

- P momentum flux due to Sun
- A surface area
- m satellite mass
- \vec{e}_D satellite-Sun unit vector
- \vec{e}_N surface normal unit vector
- Θ angle between \vec{e}_D and \vec{e}_N
- δ specular reflectivity
- ρ diffuse reflectivity

Milani et al. (1987)

Effect of solar panel pointing error

- Yaw and pitch control such that satellite solar panel (SP) continuously face the Sun
- SRP deviates from SRP model, if SP normal vector deviates from Sun vector ($\vec{e}_N \neq \vec{e}_D$)
- 1st order approximation yields SRP model error $\Delta \vec{p}$ for SP surface:

$$\Delta \vec{p} \approx -\frac{2PA}{m} \cdot \left(\frac{\delta}{3} + \rho\right) \cdot \Delta \vec{e}_N$$

$$\Delta \vec{e}_N \text{ misalignment of solar panel normal vector}$$

 SP pointing error may be attributed to commanded or unwanted attitude errors

ESA UNCLASSIFIED - For Official Use | Page 5

SP pointing error due to small attitude-biases

– Rotation of nominal normal vector \vec{e}_N about body-fixed X-, Y- or Z-axis

$$\Delta \vec{e}_N \approx (\vec{e}_X \times \vec{e}_N) \cdot \Delta \phi = -\begin{pmatrix} 0 \\ \cos \epsilon \\ 0 \end{pmatrix} \cdot \Delta \phi$$

$$\Delta \phi: \text{ twist around X-axis ("roll-bias")}$$

$$\Delta \vec{e}_N \approx (\vec{e}_Y \times \vec{e}_N) \cdot \Delta \theta = - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \cdot \Delta \theta$$

$$\Delta \theta: \quad \text{twist around Y-axis ("pitch-bias")}$$

. . .

$$\Delta \vec{e}_N \approx (\vec{e}_Z \times \vec{e}_N) \cdot \Delta \psi = \begin{pmatrix} 0\\ \sin \epsilon\\ 0 \end{pmatrix} \cdot \Delta \psi$$

$$\Delta \psi: \text{ twist around Z-axis ("yaw-bias")}$$

SRP model error due to 0.5° attitude-biases

 $\Delta \vec{p}(\varepsilon) = \frac{2PA}{m} \cdot \left(\frac{\delta}{3} + \rho\right) \cdot \left(\frac{0}{\cos \varepsilon}\right) \cdot \Delta \phi$

Zero mean, once-per-rev

Non-zero mean, but compensable if known

$$\Delta \vec{p}(\varepsilon) = -\frac{2PA}{m} \cdot \left(\frac{\delta}{3} + \rho\right) \cdot \begin{pmatrix}0\\\sin\varepsilon\\0\end{pmatrix} \cdot \Delta \psi$$

Non-zero mean, twiceper-rev

SRP model error due to large attitude-biases

sa

GPS II/IIA yaw-bias scheme

- GPS II/IIA yaw-bias (Bar-Sever 1996):
 - Since Nov 1995, yaw-bias of +0.5° is generated in ACS of II/IIA spacecraft to control its yaw-motion during Earth eclipse
 - Prior to Nov 1995, yaw-bias sign was kept opposite to that of β
 - Sign of yaw-bias determines turn direction during shadow phase
- Use reverse point positioning (RPP) technique to validate yawbias scheme
 - Bias too small to be seen in yaw estimates
 - Turn direction during eclipse reveals its sign

GPS Block II/IIA artist drawing

GPS-13: Yaw-bias monitoring with RPP

ESA UNCLASSIFIED - For Official Use | Page 9

- Y-bias estimation
 - Five day dynamic fit estimating state plus three constant and two periodic CODE SRP parameters (D0, Y0, B0, BC, BS)
- Y-bias simulation
 - Yaw-bias acceleration in Y-direction as function of μ and β :

$$p_Y(\mu,\beta) = -\frac{2PA}{m} \cdot \left(\frac{\delta}{3} + \rho\right) \cdot \sqrt{1 - \cos\mu \cdot \cos\beta} \cdot \Delta\psi$$

• Averaging over one orbital revolution yields "net effect":

$$p_Y(\beta) = \frac{1}{2\pi} \cdot \int_0^{2\pi} p_Y(\mu) = -\frac{4PA}{m\pi} \cdot \left(\frac{\delta}{3} + \rho\right) \cdot E(\cos^2\beta) \cdot \Delta\psi$$

$$E(\cos^2\beta): \text{ Complete elliptic integral of } 1^{\text{st}} \text{ kind}$$

GPS-13 Y-bias: Estimated vs. Simulated

GPS-62/63: Evidence of a problem

- Orbit modeling issues of GPS IIF satellites SVN-62/63 on June 18/19, experienced by all IGS Analysis Centers (ACs)
- Exceptional large WRMS differences between individual AC Ultra-Rapid orbit predictions and IGS Rapids of up to 4.5 m

GPS-62/63: Yaw-bias characterization test

- Yaw-bias characterization test performed by USAF
 - Testing of satellites ' heat shielding protection
 - Satellites turned -30° (GPS-62) and -20° (GPS-63) around Z-axis to expose +Y-side to direct sunlight
 - Each test lasted for more than 3 hours, starting $1^{1\!\!/_{\!\!2}}$ hours before orbit dusk
- Strong impact on orbital dynamics, particular in Dand Y-direction of Sun-fixed coordinate system
 - Effect of non-nominal attitude spreads over entire arc
 - Cannot be accommodated by empirical standard parameter set (5 SRPs + 3 CPRs)

GPS Block IIF artist drawing

GPS-62: Yaw-bias detection with RPP

GPS-62: Yaw-bias impact on SRP modelling

ESA UNCLASSIFIED - For Official Use | Page 15

sa

esa **GPS-62:** Yaw-bias impact on range data (1/2)

IGS AC FINAL clock estimates (daily drift removed)

GPS-62: Yaw-bias impact on range data (2/2)

ESA UNCLASSIFIED - For Official Use | Page 17

European Space Agency

GPS-63: Yaw-bias detection with RPP

QZSS/BDS SRP modeling at low β-angles

Summary and conclusions

- Yaw-bias dynamically most relevant attitude-bias
 - Causes twice-per-rev perturbations with non-zero mean in Dand Y-direction
 - Empirical orbit parameters "soak up" most of the effect
 - RPP is a powerful tool for identifying such biases
- GPS Block II/IIA/IIF experiments
 - Confirm high sensitivity of Y-bias against variations in yaw
 - 0.5° yaw-bias produces 0.25 nm/s² Y-bias
 - Temporary deviation (of 3 h) from nominal yaw-attitude (of 30°) is devastating for precise orbit determination and prediction
- Yaw-attitude modeling is a key element for QZSS/BDS