

VLBI and **\DOR** activities at ESOC

<u>Claudia Flohrer</u>¹, Mattia Mercolino², Erik Schönemann¹, Tim Springer¹, Joachim Feltens¹, René Zandbergen¹, Werner Enderle¹, Trevor Morley³

¹⁾ Navigation Support Office (NavSO)
²⁾ Ground Station Systems Division
³⁾ Flight Dynamics Division
ESOC, Darmstadt, Germany

First International Workshop on VLBI Observations of Near-field Targets Bonn University, Germany 5-6 October 2016

- Activities of the Navigation Support Office (NavSO)
- NavSO's interest in VLBI
- Navigating interplanetary spacecraft using △DOR
- Cooperation areas

Provision of ESA tracking site directory (geodetic reference for ESA missions)

... containing

- Antenna Information, including positions of the geometric Antenna Reference Point (ARP) in the International Terrestrial Reference Frame (ITRF)
- Coordinates and documentation of local geodetic networks

- Provision of ESA tracking site directory (geodetic reference for ESA missions)
- Leader of the Galileo Geodetic Service Provider (GGSP) consortium

GGSP provides the geodetic reference for Galileo

- Galileo Terrestrial Reference Frame (GTRF): independent realization of the International Terrestrial Reference System (ITRS)
- EOPs

- Provision of ESA tracking site directory (geodetic reference for ESA missions)
- Leader of the Galileo Geodetic Service Provider (GGSP) consortium
- Operation of own global GNSS sensor station network (17 stations)

ESA's GNSS Sensor Station Network operated by NavSO

Claudia Flohrer | ESOC | 05/10/2016 | Slide 6

ESA UNCLASSIFIED - For Official Use

European Space Agency

- Provision of ESA tracking site directory (geodetic reference for ESA missions)
- Leader of the Galileo Geodetic Service Provider (GGSP) consortium
- Operation of own global GNSS sensor station network (17 stations)
- Provision of media calibrations for ESA Spacecraft Tracking Data

NavSO provides tropospheric and ionospheric calibrations for Flight Dynamics support of ESA deep space missions (△DOR) using ESA's 3 Deep Space Antennas These calibrations are computed from GNSS-derived tropospheric zenith delays and STEC data obtained from dualfrequency measurements, as part of NavSO's routine processing for the IGS

- Provision of ESA tracking site directory (geodetic reference for ESA missions)
- Leader of the Galileo Geodetic Service Provider (GGSP) consortium
- Operation of own global GNSS sensor station network (16 stations)
- Provision of media calibrations for ESA Spacecraft Tracking Data
- Realization of UTC (ESOC)

NavSO has developed and is operating a UTC realization at ESOC

- Can be used as time reference for ESA missions
- Implementation fully in line with BIPM requirements
- Official contribution to UTC is in preparation

- Provision of ESA tracking site directory (geodetic reference for ESA missions)
- Leader of the Galileo Geodetic Service Provider (GGSP) consortium
- Operation of own global GNSS sensor station network (16 stations)
- Provision of media calibrations for ESA Spacecraft Tracking Data
- Realization of UTC (ESOC)
- Precise Orbit and Clock Determination for satellites in LEO, MEO, GEO, HEO
 - Development of state of the art models and algorithms for high-precision GNSS/SLR/DORIS/Altimetry data processing
 - In-house developed own software package: NAPEOS Capable of combined processing of data from all different satellite-geodetic techniques within one single s/w package

- Provision of ESA tracking site directory (geodetic reference for ESA missions)
- Leader of the Galileo Geodetic Service Provider (GGSP) consortium
- Operation of own global GNSS sensor station network (16 stations)
- Provision of media calibrations for ESA Spacecraft Tracking Data
- Realization of UTC (ESOC)
- Precise Orbit and Clock Determination for satellites in LEO, MEO, GEO, HEO
- Contribution to Geodetic Reference Frame Realization via IGS, ILRS, IDS analysis center activities and product generation including reprocessing

- Provision of ESA tracking site directory (geodetic reference for ESA missions)
- Leader of the Galileo Geodetic Service Provider (GGSP) consortium
- Operation of own global GNSS sensor station network (16 stations)
- Provision of media calibrations for ESA Spacecraft Tracking Data
- Realization of UTC (ESOC)
- Precise Orbit and Clock Determination for satellites in LEO, MEO, GEO, HEO
- Contribution to Geodetic Reference Frame Realization via IGS, ILRS, IDS analysis center activities and product generation including reprocessing
- Enhancement of processing capabilities for VLBI tracking data

Enhancing the processing capabilities of NAPEOS for VLBI tracking data will allow NavSO to ...

- complete ESOC's capabilities in generating independent EOPs
 - become independent of external services to ensure the operational capability of ESOC
- contribute to the IVS service as analysis centre
- enhance our contribution to the IERS service with UT1-UTC and nutation products
- enable NAPEOS to combine all space-geodetic techniques at the observation level

The current VLBI implementation efforts focus on the processing of quasar signals, but extension to Earth-orbiting satellites is intended.

	Parameter	GNSS	SLR	DORIS	VLBI
CRF	Quasar positions				Х
	Satellite orbits	Х	Х	Х	
EOP	Nutation				X
	UT1-UTC				X
	LOD	Х	Х	Х	Х
	Polar motion	Х	Х	Х	Х
TRF	Station positions	Х	Х	Х	Х
	Geocenter	Х	Х	Х	

VLBI implementation into NAPEOS (1)

NAPEOS implementation steps		
•	Read observations from NGS card format	\odot
•	Set up database for source and site coordinates	\odot
•	Set up new observation type "VLBI group delay"	\odot
•	Set up observation equation	\odot
•	Compute observation corrections	\odot
•	Enable parameter estimation (compute partial derivatives)	(
•	Enable combination at observation level (different observation types contribute to the same parameter, different observation weighting)	8

VLBI implementation into NAPEOS (2) Observation corrections

$$\tau_0 = \tau_g + \tau_{rel} + \tau_{clk} + \tau_{trp} + \tau_{ion} + \tau_{inst}$$

Observation corrections		Maximum order of magnitude	Status
•	Geometric delay	Earth radius	\odot
٠	Relativistic corrections	1000 m	\odot
•	Clock synchronisation (offset w.r.t. reference clock)	Several km	٢
٠	Tropospheric delay	10 m	\odot
•	Ionospheric delay	2 m	\odot
•	Instrumental delay (axis offset)	1 m	\odot

Current O-C residuals: ~ 10 cm level (without parameter estimation)

Today navigation of interplanetary spacecraft relies on three tracking methods:

- Ranging \rightarrow s/c range along line-of-sight
- Doppler → s/c velocity along line-of-sight
 - Angular position against sky-background only indirectly obtained from motion of ground station due to Earth's rotation
 - When observation is close to celestial equator: North-South position is poorly determined
- $\triangle DOR \rightarrow$ s/c angular position
 - At least △DOR observations from 2 baselines with different orientation (orthogonal) needed for full direction information
 - Short observation duration (<1h)

ESA's Deep Space Antennas 35-metre diameter

Claudia Flohrer | ESOC | 05/10/2016 | Slide 17 ESA UNCLASSIFIED - For Official Use

DSA1 - New Norcia (Australia)

- in service since 2003
- S-, X-band
- Ka-band upgrade planned

DSA2 - Cebreros (Spain)

- in service since 2005
- X-, Ka-band

DSA3 – Malargüe (Argentina)

- in service since 2013
- X-, Ka-band

- Improves plane-of-sky knowledge at critical navigation phases
- Improves orbit determination (OD) accuracy → saves propellant
- Independent confirmation of conventional OD solutions → improves robustness
- Fast recovery of orbit knowledge after unknown △V → e.g. safe mode entry with unbalanced thrusters

History of (ESA) \triangle DOR system accuracy

ESA UNCLASSIFIED - For Official Use

Cooperation areas

- Interoperability with other Agencies
 - With JPL: ESA baseline CEB-NNO is almost perfectly orthogonal to JPL baseline Goldstone-Canberra, thus providing complementary information for OD
 - With JAXA: NNO is almost in a North-South direction with Japanese stations (and declination is the coordinate which is worse determined by Doppler and ranging only solutions). CEB would provide a very long baseline when in conjunction with one Japanese antenna.
- Interoperability with VLBI network
 - Helpful to build X/Ka-band quasar catalogue
 - Enlarge number of usable baselines

The NASA-ESA X/Ka-band network

- Malargüe (ESA DSA3) adds 3 baselines
- Full sky coverage by accessing south polar cap
- Near perpendicular mid-latitude baselines: AC to BC

Claudia Flohrer | ESOC | 05/10/2016 | Slide 21

- ESA's NavSO is currently enhancing the processing capabilities of NAPEOS for VLBI tracking data
- ESA's △DOR system was implemented in 2005 and is used to support interplanetary spacecraft navigation
- ESA is in cooperation with other agencies for △DOR observation and VLBI network densification (X/Ka-band quasar catalogue)

