

· e e sa

genesis

GENESIS: an ESA Mission for the benefit of Navigation and Science

P.Waller, S.Gidlund, G.Fusco, E.Honore-Livermore, E.Sakalauskaite: ESA ESTEC E.Schoenemann, W.Enderle: ESA ESOC V.Navarro: ESA ESAC

European Navigation Conference 2024 ESA ESTEC, Noordwijk, NL 22 May 2024

ESA UNCLASSIFIED – For ESA Official Use Only

01 GENESIS Mission Objectives

2 GENESIS Science

Overview of ...The Mission ...The System ...The Satellite and Payloads

04 Scientific Setup

05 Conclusions

03

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

GENESIS Primary Objectives

GEODESY and REFERENCE FRAMES

Contribute to improve the link between the ITRF and the ICRF, thanks to the increased consistency of the Earth Orientation Parameters (EOP). In particular, this mission shall allow for the first time a link between the orbit reference frame, ITRF and ICRF.

Targets: Accuracy: 1 mm Stability: 0.1 mm per year

ESA UNCLASSIFIED – For ESA Official Use Only

- 💳 📕 🚝 💳 🚝 📕 🗮 💳 📕 📕 💳 📲 🔚 💳 🗛 🚳 🚬 📕 🗮 🛨 💶 🖅 🐨 🔽 🐓 → THE EUROPEAN SPACE AGENCY

GENESIS-enabled Science and Applications

→ THE EUROPEAN SPACE AGENCY

Overview of the GENESIS Mission

Overview

• GENESIS is managed by the ESA Navigation Directorate and part of its **FutureNAV Programme**

Mission scope

- Design, development and qualification of the satellite (incl payloads) and ground segment
- Launch and early operations including commissioning and calibration
- **Operations** (2 years, option for extension)
- Data exploitation (Including processing, archiving and data distribution from ESA facilities)

👝 🔜 📕 🚝 💳 🔚 🔚 🖆 💶 🚺 📕 📥 👭 🔤 🔤 🚳 🔤 👘 🖬 👘 🔤

Overview of the GENESIS Mission

🗕 💶 📕 🚍 🔤 🔚 📕 🗮 🔤 📕 📲 🚝 📲 🔤 🔤 🥥 🖉 🔚 🗮 🗮 ன 🖉

Overview of the GENESIS Mission

GENESIS System Overview

System:

- Satellite
- GCS (Ground Control Segment)
- ESA PROAD (PROcessing, Archiving & Distribution)
- Existing infrastructure (GNSS, SLR, VLBI, DORIS)
- Four on-board geodetic Instruments:
 - SLR: passive reflector DORIS, GNSS: on-board receivers VLBI: on-board transmitter in existing VLBI frequency bands

Mission Phases:

- Launch and commissioning
- In-orbit test and calibration
- Operations
- End of mission
 A UNCLASSIFIED For ESA Official Use

GENESIS Satellite and Payload Overview

Description

- Satellite ~250-300kg, ~6000km alt. (MEO), ~95° inclination
- Platform: maximum reuse of qualified equipment
- Payload: 4 co-located geodetic instruments (GNSS, DORIS, SLR, VLBI) and an ultra-stable oscillator for synchronisation

Key drivers:

Radiation environment: total dose and single events effects
Radiofrequency and electromagnetic compatibility
Non-gravitational forces: mechanisms, geometry, materials...
Spacecraft centre-of-mass and attitude law
Synchronisation of active instruments to the on-board oscillator
On-board instruments systematic biases and their calibrations: phase centres + group delays

_____ 💶 📕 🚝 🚍 🔚 📕 ╧═ 🔤 📕 📕 🚍 👭 🚍 👭 🔤 ன 🚳 🚬 📕 👫 🕂 💶 💳 🐷 🐷 💭 → THE EUROPEAN SPACE AGEN

Description:

- Multi-channel/multi-GNSS receiver
- Nadir and Zenith antennas
- Externally synchronised to on-board reference frequency

GENESIS Payload: GNSS Receiver

Key drivers:

- Quality of observables (signal-to-noise ratio, Cycle Ambiguity Resolution, ...)
- GNSS visibility at 6000km
- Antenna Phase Center Offsets calibration (vs. azimuth/elevation, vs. temperature)
- Antenna location on platform
- Instrument and antenna group-delay stability
- On-board time tagging of observables

GENESIS Payload: VLBI Transmitter

Description:

- 4 frequency bands within [2GHz, 14GHz]
 PSFD: [0.5Jy, 10Jy]
 Single nadir antenna with full Earth Field of View
 - Externally synchronised to on-board reference frequency

Key drivers:

- ITU regulations, RF Interferences and EMC Single multi-band antenna over wide bandwidth Compatibility with both legacy and VGOS stations Antenna PCOs calibration (vs. azimuth/elevation, vs. temperature)
- Instrument group-delay calibration

VLBI Transmitter breadboard for G2G (https://h2020nav.esa.int/project/h2020-038-01)

VLBI Radio Telescope in Wettzell, Germany (https://shorturl.at/ctwGP)

👝 🚍 📕 🚝 🚍 🔚 📕 🚝 📕 📕 🔚 🔚 📲 👫 🚍 🙀 🖓 🖕 📕 👭 🛨 🔤 👘 🖓

GENESIS Payload: Laser Retro-reflector

Description:

- Passive LRR on the nadir-side of the satellite
- Array of corner cube reflectors

Key drivers:

Field of view and optical cross-section at 6000km

- Thermo-elastic effects, materials...
- Accommodation
- Compatibility with SLR stations PCO calibration

ESA UNCLASSIFIED – For ESA Official Use Only

💳 💶 📕 🗮 💳 🚛 🚛 🚛 📕 💶 📕 📲 🗮 🔤 📲 ன 🚱 🔽 📲 👫 📲 🖬 🔤 🚟 👘 → THE EUROPEAN SPACE AGENCY

GENESIS Payload: DORIS receiver

Description:

- Doppler tracking of UHF and S-band ground beacons
- Dual-frequency nadir antenna
- Externally synchronised to on-board reference frequency

Key drivers:

- Ground Beacon visibility at 6000km
- Quality of observables and on-board processing
- Antenna PCOs calibration (vs. azimuth/elevation, vs. temperature)
- Instrument group-delay calibration
- MEO radiation environment

ESA UNCLASSIFIED – For ESA Official Use Only

👝 🔤 📕 拱 👝 🚍 🛃 🌌 🚛 📕 📕 🔤 👫 🚍 🛶 🚳 🚬 📲 👯 💶 🖬 ன 🚳 🖂 🖬 👘

GENESIS Data PROcessing, Archiving and Delivery

esa

 \Diamond

genesis

· e e sa

GENESIS Science Team

GENESIS Science Team

GENESIS Science Management Board

- ESA GENESIS Scientific Representative
- GENESIS Mission Lead Scientific Coordinator
- GENESIS Mission Lead Scientific Co-Coordinator
- Working Groups Chairs

GENESIS Science Exploitation Team (GSET)

- GENESIS Mission Lead Scientific Coordinator and Co-Coordinator
- GENESIS Working Groups (WGs)
 - WG1: ITRF and Combination of Techniques
 - WG2: GNSS
 - WG3: VLBI
 - WG4: DORIS
 - WG5: Laser Ranging

ESA UNCLASSIFIED – For ESA Official Use Only

💳 🗖 📕 🕂 🧮 🔚 🔚 🔚 🔚 🔚 📲 👬 🚍 🖓 🔯 🔤 👘 🖓

GENESIS Science Workshop

29th February @ ESOC

- Attendance from all relevant International Geodetical Services (Chairs or deputies):
 - IAG, IERS, IGS, IVS, ILRS, IDS
- Strong commitment and engagement from the community
- Over 100 people onsite and online

Agenda

- Morning
 - Presentations from the ESA GENESIS project team
- Afternoon
 - Interactive working group discussions
 - Wrap up and Conclusions

"GENESIS – A Mission for the World"

ESA UNCLASSIFIED – For ESA Official Use Only

💳 📕 🕂 🧮 💳 🚛 🚛 🚛 📕 💶 📲 📲 🚝 💭 🚳 🚬 📕 🕷 🛨 🖬 📰 🐨 🖓 📩 The European space agency

GENESIS Science Exploitation Team - Nominations

Coordinator	Özgur Karatekin Royal Observatory of Belgium – RoB	
Co- Coordinator	Francesco Vespe ASI Space Geodesy Centre at Matera	
WG1: ITRF & Combination of Techniques	Zuheir Altamimi Institut national de l'information géographique et forestière – IGN Florian Seitz Deutsches Geodätisches Forschungsinstitut-Technischen Universität München – DGFI	
WG2: GNSS	Rolf Dach Universität Bern Benjamin Männel Deutsches GeoForschungsZentrum – GFZ	
WG3: VLBI	Rüdiger Haas Chalmers Tekniska Högskola	
WG4: DORIS	Guilhem Moreaux CLS-Collecte Localisation Satellites	
WG5: Laser Ranging	Clément Courde Centre national de la recherche scientifique-Géoazur	
+ +		THE EUROPEAN SPACE AGENCY

To conclude...

esa

Thanks to combined efforts from Scientific Community, ESA Member States, Industry and ESA, the **GENESIS Mission has become a reality!**

This challenging mission will be a stepping stone towards **improved GNSS and navigation**, together with addressing **major scientific and societal goals**

Despite a challenging schedule, ESA, Industry and the Scientific community are fully committed to the **success of the Mission**, starting with a System Requirement Review in fall 2024

We are looking forward to updating the community on the progress of the mission

GENESIS – AT THE FOUNDATION OF NAVIGATION

ESA UNCLASSIFIED – For ESA Official Use Only

👝 🚍 📕 🖶 🧮 🚍 🛃 📕 🗮 🔲 📲 📲 📲 📲 📲 🚔 🔤 🖓 🚬 📲 💥 두 📭 🐷 🖅 💭 🏧 🖓 🔶 THE EUROPEAN SPACE AGENCY

Thank you for your attention

ENC 2024

genesis

esa

ESA UNCLASSIFIED – For ESA Official Use Only

👝 🚍 📕 🚝 🧮 🚍 🔚 🗮 🚍 📕 📕 🖛 📕 🖛 🛶 🚳 🖕 🥼 🦐 🖬 👫 🕂 🕶 🛶 🖉

Back-up Slides ENC 2024

ESA UNCLASSIFIED – For ESA Official Use Only

₩ -* → THE EUROPEAN SPACE AGENCY + . *