Presentation of Public ESA Multi-GNSS Products

Volker Mayer, T. Springer, E. Schönemann, W. Enderle

17/10/2018
ESOC Navigation Support Office

- Located at ESOC in Darmstadt

- Providing high precision GNSS orbit and clock products since 1992:
 - IGS (GPS+GLONASS)
 - GRAS GSN
 - GGSP/OVF (+Galileo)
 - Sentinel
 - etc.
Multi-GNSS

• All projects push to exploit advantages of Multi-GNSS

<table>
<thead>
<tr>
<th></th>
<th>In Operation</th>
<th>In Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>GLO</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>GAL</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>BEI</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>QZS</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>122</td>
</tr>
</tbody>
</table>
Multi-GNSS Efforts at ESOC

- Daily processing routine of multi-GNSS, based on IGS routine
 - Minimal-constraint 24 hours network-solution of all operational GNSS satellites
 - Started in 2005 as experiment to study characteristics of the new constellations

- Centre-piece of ongoing development work at ESOC:
 - Orbit & Clock modelling
 - Cycle Ambiguity resolution
 - Differential Code/Carrier Biases
 - L-Band signal combinations (all available signals)
 - ESA Earth Orientation Parameters (based on GNSS, VLBI, SLR and DORIS)
 - POD of Formation Flying and Constellations
 - GNSS Space Service Volume
Day-boundary orbit differences (worst case)

ESOC MGNSS Products
01.2018 - 06.2018

RMS of 3D orbit difference at day boundary [mm]

PRN

BeiDou
Galileo
GPS
QZSS
GLONASS
GALILEO Radiation Pressure Modelling
SLR Residuals with only ECOM (empirical model)

Credit: T. Springer
GALILEO Radiation Pressure Modelling
SLR Residuals with Box-Wing model (physical model)

Credit: T. Springer
Next Generation Radiation Pressure Model
ARPA (Aerodynamics and Radiation Pressure Analysis)

- **In Testing:**
 Replacement of Box-Wing model by **Raytracing** Procedure

- Detailed information about satellite geometry and surface properties allows improved modelling of **Radiation Pressure** and **Air Drag** (LEO)

Galileo FOC.
Credit: ESA-P. Carril

Ray-Source simulating the Sun or the Earth
Credit: F. Gini
QZSS – Cooperation with JAXA

- **Ongoing** bilateral project to improve QZSS products of JAXA and ESOC

Day boundary differences of ESOC products
Latest improvements
Zero-Mean Reference Clock

- New logic to overcome clock datum defect:

Old:
Fix Station clock with best linear fit as Reference clock

New:
Ensemble Clock
Zero-mean constraint on the stations with best linear fit to reduce systematics
ESOC MGNSS Final Products

- Final products with 13 – 6 days delay

<table>
<thead>
<tr>
<th>Products</th>
<th>Format</th>
<th>Ext.</th>
<th>Interval</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeris</td>
<td>SP3</td>
<td>.sp3</td>
<td>300 s</td>
<td>24 h</td>
</tr>
<tr>
<td>Clocks</td>
<td>CLK RINEX</td>
<td>.clk</td>
<td>30 s</td>
<td>24 h</td>
</tr>
<tr>
<td>Inter-System Bias</td>
<td>SINEX</td>
<td>.bias</td>
<td>24 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Earth Rotation Parameter</td>
<td>ASCII</td>
<td>.erp</td>
<td>24 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Summary file</td>
<td>ASCII</td>
<td>.sum</td>
<td>168 h</td>
<td></td>
</tr>
</tbody>
</table>

- Available at:
 - http://navigation-office.esa.int
 - (soon) GNSS Science Support Centre https://gssc.esa.int
Application of MGNSS solution at ESOC

- Test environment and template for future projects

- Performance Monitoring for:
 - ESA’s GNSS Observation Network (EGON)
 - UTC(ESA)
 - Reference solution for external projects

- Galileo Predictions for the ILRS

- IGS-IGMA Pilot Project (International GNSS Monitoring and Assessment)